Development of nonsurfactant cyclodextrin nanoparticles loaded with anticancer drug paclitaxel.

نویسندگان

  • Erem Bilensoy
  • Oya Gürkaynak
  • Mevlut Ertan
  • Murat Sen
  • A Atilla Hincal
چکیده

In the current formulation of clinical use paclitaxel (PCX) is associated with solubilizers that may produce severe side effects. In this study, PCX was complexed to an amphiphilic cyclodextrin (CD), 6-O-CAPRO-beta-CD, capable of forming nanoparticles spontaneously in order to mask its physicochemical properties via the formation of inclusion complexes of the drug with amphiphilic CD before the nanoparticle is formed. Complexes have been characterized with various techniques such as (1)H NMR, Fourier Transform Infrared (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) confirming the formation of inclusion complex between PCX and 6-O-CAPRO-beta-CD. Nanospheres and nanocapsules were prepared directly from the preformed PCX/6-O-CAPRO-beta-CD inclusion complex by the nanoprecipitation technique, showing a size from 150 to 250 nm for nanospheres and from 500 to 500 nm for nanocapsules. Zeta potentials of the nanospheres and nanocapsules indicate stable colloidal dispersions within the range of -18 to -39 mV. A 12-month physical stability was demonstrated for blank nanoparticles. PCX encapsulation was high with three-fold increase in loading when nanoparticles are prepared directly from preformed inclusion complexes of the drug with 6-O-CAPRO-beta-CD. In vitro liberation profiles of PCX from CD nanoparticles show a prolonged release profile for this drug up to 12 h for nanospheres and 24 h for nanocapsules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery

Background: Paclitaxel is a potent anticancer drug that is effective against a wide spectrum of cancers. To overcome its bioavailability problems arising from very poor aqueous solubility and tendency to recrystallize upon dilution, paclitaxel is commercially formulated with co-solvents such as Cremophor EL® that are known to cause serious side effects during chemotherapy. Amphiphilic cyclodext...

متن کامل

A Comparison between the Anticancer Activities of Free Paclitaxel and Paclitaxel-Loaded Niosome Nanoparticles on Human Acute Lymphoblastic Leukemia Cell Line Nalm-6

Background: Niosomes or Nonionic surfactant vesicles are nano vehicles utilized in drug delivery systems, especially in cancer therapy. In this study, these vesicles were applied as delivery system for anticancer drug, paclitaxel and then, its anticancer activities was compared with free paclitaxel on Human Acute Lymphoblastic Leukemia (ALL) cell line Nalm-6. Materialas and Methods: In this exp...

متن کامل

Preparation of basil seed mucilage aerogels loaded with paclitaxel nanoparticles by the combination of phase inversion technique and gas antisolvent process

Objective(S): In this work, paclitaxel (PX), a promising anticancer drug, was loaded in the basil seed mucilage (BSM) aerogels by implementation of supercritical carbon dioxide (SC-CO2) technology. Then, the effects of operating conditions were studied on the PX mean particle size (MPS), particle size distribution (PSD) and drug loading efficiency (DLE). <stron...

متن کامل

A multifunctional lipid nanoparticle for co-delivery of paclitaxel and curcumin for targeted delivery and enhanced cytotoxicity in multidrug resistant breast cancer cells

The objective of the work was to develop a multifunctional nanomedicine based on a folate-conjugated lipid nanoparticles loaded with paclitaxel and curcumin. The novel system combines therapeutic advantageous of efficient targeted delivery via folate and timed-release of curcumin and paclitaxel via 2-hydroxypropyl-ß-cyclodextrin, thereby overcoming multidrug resistance in breast cancer cells (M...

متن کامل

Modification of paclitaxel-loaded solid lipid nanoparticles with 2-hydroxypropyl-β-cyclodextrin enhances absorption and reduces nephrotoxicity associated with intravenous injection

BACKGROUND Paclitaxel (PTX) solid lipid nanoparticles (SLNs) modified with 2-hydroxypropyl-β-cyclodextrin (HPCD) were evaluated for their ability to enhance PTX absorption and reduce the nephrotoxicity accompanying intravenous administration. METHODS PTX-loaded SLNs (PS) and PTX-loaded SLNs modified using HPCD (PSC) were prepared by hot-melted sonication. The anticancer activity of PSC was ev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of pharmaceutical sciences

دوره 97 4  شماره 

صفحات  -

تاریخ انتشار 2008